If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25t^2+t-526=0
a = 25; b = 1; c = -526;
Δ = b2-4ac
Δ = 12-4·25·(-526)
Δ = 52601
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{52601}}{2*25}=\frac{-1-\sqrt{52601}}{50} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{52601}}{2*25}=\frac{-1+\sqrt{52601}}{50} $
| X^2+5x+1=7x | | 3(x+7)=-8x-45 | | 2+8h-7=2(3+4h)-11 | | 10-10|-8x+4|=10 | | 3(c-2)=2(c-6( | | -1(3k-12)=-54 | | 4y+15=38 | | 4(3d-1)=7+12d-3 | | 5(w+4)-7w=2 | | 6a-3=-18+- | | 50-1.99x=30 | | g+-10g=-9 | | 3x-228=x | | 9/n=8/11/3 | | 5m^2-55m=-150 | | -2(a+3)4a=18 | | 3f+14=7 | | 8m-4=-56 | | 4v^2=-28v | | 8x-2(x1)=2(3x-1) | | 3p-7=-40 | | 8x-2(x1)=2(3x1) | | y-(-74)=-22 | | 5x-7+2x+8=180 | | 5x=4x/16 | | -5e+6e-6=19 | | 5m^2-27m+10=0 | | y-(-3)=100 | | 2x-45=8x^2+2x | | q-11/3=3 | | 8x-9x=-x | | b+10/3=4 |